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Two-Cell Stochastic Model of the SchlOgl 
Reaction with Small Diffusional Coupling 
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We study a stochastic theory of the two-cell model of the Schl6gl reaction 
beyond the bistability threshold. We restrict ourselves to the case of a small 
diffusional coupling, where inhomogeneous steady states occur, and where a 
nucleationlike behavior is expected. Our analysis agrees with the deterministic 
analysis in the thermodynamic limit, and permits to calculate the long time 
evolution of the probability distribution function. We compare our results with a 
recent Monte Carlo simulation of this problem. 
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1. INTRODUCTION 

The theoretical  s tudy of  nonlinear  reaction-diffusion systems has received 
much attention in recent years.  These systems can exhibit  a cooperat ive  
behavior  which leads to a number  of  interesting si tuations such as bistabi l i ty,  
l imit cycle, spatial  organizat ion,  and turbulence. Their determinist ic  
descr ipt ion involves a set of  coupled nonl inear  equations,  which can be 
successfully handled by using the bifurcat ion or ca tas t rophe theories. (1'2) An  
interesting development  consists in employing the stochast ic  Master  
Equation,  (1'3) which permits  the analysis  of  internal f luctuations far from 
equilibrium. This equation,  which describes react ion and diffusion as r andom 
processes,  is intuit ively quite appealing.  On the other hand,  its solution is not 
simple. A number  of  theoret ical  investigations have been developed the last 
few years.  Numer ica l  calculat ions based on Monte  Car lo  methods (4) or on 
M.D. s imulat ions (5) have proved to be valuable  in this case, as in other 
domains  of  stat ist ical  mechanics.  On a purely analyt ica l  level, one may  
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quote works using the cumulant expansions, (6'7) the Fokker-Planck and 
Langevin Equation, (8) or the WKB expansions. ~9-11) In the one variable case, 
the first two methods are satisfactory when the system presents only one 
stable stationary state, or in other words when the probability distribution is 
singly peaked. They fail in the case of bistability, when a second peak of the 
distribution appears. The WKB expansion applies even in the case of 
bistability, and permits to obtain an analytical expression of the stationary 
distribution. ~1~ Unfortunately, in the multivariate case, the Hamilton- 
Jacobi equation obtained in first order of this expansion cannot be solved 
exactly; a local expansion around each macroscopic steady states is then 
necessary. (12) The method bears similarities with the cumulant expansion, 
and does not apply beyond the bistability threshold since a nonlocal solution 
is necessary to connect the two steady states. 

In this paper, we consider the most simple diffusion-reaction model 
involving bistability, namely, the two-cell model of the Sehl6gl reaction. This 
model has been studied numerically quite recently. (13) 

In spite of its apparent simplicity, it exhibits all the difficulties inherent 
in the multivariate master equation. In particular, the stationary probability 
distribution cannot be calculated exactly. We shall limit ourselves to the case 
where the system is far beyond the bistability threshold and consider only 
the long-time behavior of the probability distribution. The short-time 
behavior can be handled conveniently by the various expansion methods 
mentioned earlier. (6'12) They predict a simple relaxation around each stable 
macroscopic stationary state and a formation of quasistationary peaks. The 
long-time behavior involves the equilibration of the different peaks of the 
quasistationary distribution, and has to be treated by a different method. The 
key asumption is that, at long times, the probabilities are locally in 
equilibrium around each stable steady state. This asumption has first been 
used by Kramers in the case of the Fokker-Planck equation with a double- 
well potential. ~17) His precursory work has been widely discussed and 
improved ever since (see, for example, Refs. 18-23). In particular, extensions 
have been made to include nonpotential systems, ~2~'z5) or non-Markovian 
dynamics.(26,z7) 

In Section 2, we briefly mention the deterministic model of the Schl6gl 
reaction in a homogeneous cell, and the model consisting of two cells 
coupled by diffusion, following the work of W. Ebeling and H. Malchow. (14) 

In Section 3, we study the stochastic theory of the two-cell model, 
starting from the master equation formalism. We restrict ourselves to the 
case of small diffusional coupling, and apply a calculation scheme suggested 
by our previous work on the homogeneous model of the Schl6gl reaction. (~5) 
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2. DETERMINISTIC ANALYSIS 

2.1. Homogeneous System 

Let us consider the Schl6gl reaction(16): 

B - ~  X,  A + 2 X - ~  3X  
k3 k2 

(1) 

We suppose that this reaction takes place in a homogeneous box, and that 
the concentration of A and B are maintained constant. If n(t) is the number 
of molecules X at time t, the kinetic equation of reaction (1) reads 

dn 
dt - w(n) - ff~(n) (2) 

where w(n) and #(n) stand for the rates of creation and destruction of the 
species X: 

k2 n 2 w(n) = n a ~ + k 3 n 8 

( k l  n z ) l~(r/)=n - - ~  + k  4 

(3) 

V is the volume of the cell; n A , n~ represents the number of the molecules A, 
B, respectively. Putting 

_ nAk2 kl V 2 k4kl  V 2 k3 klnn2 V 2 
n = n  kl , t = r  (n~k2) 2,  2 -  (nAk2)Z, U =  (nAk2) 3 (4) 

eq. (2) yields 

For 

d~ = __/73 _~_ /72 __ ~./~ ..~././ (5) 
dr 

A = 4 ( 2 -  3) 3 + 27(~-~ , /3  + @7) 2 > 0 

(2) admits one stationary solution a. For A < 0, there are three stationary 
solutions a < fl < 7. A straightforward stability analysis shown that a and ? 
are stable while fl is unstable. 

2.2. The Two-Cell Model 

We now consider the system consisting of two identical cells coupled by 
diffusion. In each of them takes place the Schlfgl reaction described by (1), 
with the same pumping conditions for A and B. 
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The coupled differential equations for the numbers n~ and n 2 of 
molecules of X in each cell are 

?~1 = w(nO -- r?(nl) + D(nz - nl) 
(6) 

h 2 = w(n2) - rP(nz) + D(nl -- n2) 

D is a diffusion coefficient, which can be related to Fick's diffusion coef- 
ficient d via the formula 

d 
D = 7  (7) 

where l stands for the length of each cell. The stationary solutions of (6) can 
be found graphically. ~4) If the chemical equation w ( n ) -  ff~(n)=0 admits 
itself one single solution a, the system (6) can be easily seen to admit only 
one homogeneous solution (n l ,n2)=  (a,a). If the chemical equation has 
three possible solutions a, fl, 7, we shall refer the reader to the detailed work 
of Ebeling and Malchow. ~4) The system (6) then turns out to admit up to 
nine solutions. Two critical values De1 and De2 of D come out from this 
analysis. For D <Dcl, both homogeneous and inhomogeneous solutions 
occur; the homogeneous solutions (a, a) and (7, 7) are stable nodes, whereas 
~,/3) is an unstable point. The inhomogeneous solutions include two stable 
nodes and four saddles. For D~ < D < D~2, the two inhomogeneous stable 
nodes and two of the inhomogeneous saddle points disappear. For D > D~2, 
only the homogeneous solutions remain. (a, a) and (7, 7) are still stable 
nodes while (fl, fl) becomes a saddle point. 

3. STOCHASTIC ANALYSIS OF THE TWO-CELL MODEL 

3.1. Master Equation 

Fluctuations of the number of molecules X in the system can be taken 
into account via the master equation formalism~l); n I and n 2 are considered 
as random variables, and the evolution of p(nln2) is given by 

dp(nl, n2) 
dt 

W . , _ i p ( n l -  1, n 2 ) -  (W. 1 + ffznl) p(nl,n2) 

+ I~n,+,p(n 1+ 1,nz)+ W~2 l p ( n l , n 2 - 1 )  

- ( W . 2 +  ff-~.2)P(nl,n2)+ l~.2+lp(nl ,nz+ l) 

-- D(n 1 + nz) p ( n , ,  n2) + D(n I + 1) p(n I + 1, n 2 -  1) 

+D(n z + l ) p(n 1 - 1 , n  2+1)  (8) 
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The chemical reaction within each cell is there considered as a birth and 
death process; W,~ and W~f are the birth and death rates from a state with n; 
molecules of X in cell i. These transition rates are, in the notation of 
Section 2. I, ~1) 

Wnl = nAkzn i (n  i -- 1)/V 2 + k3nB 

ff.',~ = k ln i (n  i - 1 ) ( n i -  2 ) / V  2 + k4n i 

(9) 

The diffusion is described as a random exchange between cell 1 and 2, with 
passage probability per unit time from cell i to cell j equal to Dn i. It should 
be noticed that no detailed balance exists in Eq. (8), and the stationary 
solution cannot be found exactly. 

3.2. Quasistationarity Hypothesis 

In the following we shall limit ourselves to the case where the chemical 
reaction is bistable, and the diffusion coefficient is small, namely, D < D c .  
In this situation deterministic inhomogeneous steady states occur, and a 
nucleationlike behavior is expected, as has been shown by Monte Carlo 
simulation, (13) whereas for large diffusion coefficients the two-cell system 
behaves more or less like a single cell. In the case of small D, the stationary 
distribution has presumably the shape shown by Fig. 1. It presents two peaks 
concentrated on the homogeneous steady states (a, a) and (7, 7), and two 
peaks which are symmetrical with respect to the main diagonal and concen- 
trated on the inhomogeneous steady states (a' ,  7') and (7', a ').  For D = 0, 
one has a ' =  a and 7 ' =  7. When D increases, a '  and 7' are slightly shifted 
toward 7 and a, respectively, as represented in Fig. 1. 

In the plane (nl,n2), we can distinguish four regions where the 
probability distribution differs significantly from zero. They will be denoted 
by (aa),  (aT), (7a), (77), corresponding, respectively, to (n I E (a), r/2 E (a)),  
(n 1E(a ) ,  n 2C(7)),  (n lE(7 ) ,  n2C(a) ) ,  (n~E(7),  n2~(Y)), with ( a ) =  
{i:i  < m} and (y)-= {i: i  > M}, m and M being arbitrary states chosen 
sufficiently far from each side of ft. 

Starting from any initial distribution, the temporal evolution of 
p(n~,  n2) can be understood qualitatively as follows. On a short time scale, 
the four regions can be considered as disconnected from each other, and the 
distribution relaxes independently in each of them, giving four 
quasistationary peaks centered on the macroscopic steady states. The weight 
or total probability of these peaks corresponds to the respective weight of the 
initial distribution in each region. The long time evolution will be a slow 
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Qualitative shape of the stationary distribution for small D. 

exchange between the peaks without change of their shape until the 
stationary distribution is reached. This description is based on our main 
hypothesis, which amounts to assume that in each cell the exchanges 
between the regions (a) and (7) are much slower than the relaxation inside 
these regions, in spite of the diffusion, if the diffusion coefficient D is small 
enough. This reasonable asumption is of course difficult to justify 
analytically, since the exact long time evolution is not known. However, we 
shall see that the consequences of this approximation agree fairly well with 
the results of numerical simulations, which confirms the validity of our 
methods. 

3.3. Reduced Evolution Equation 

The asumptions described earlier lead to a simple equation for the 
probability p(x, y) to find cell 1 in region (x) and cell 2 in region (y): 

p(x,y)= )1 ~ p(n~,n2) (10) 
nle(x) n2e(y)  

As a matter of fact it will be shown that p(x, y) satisfies an evolution 
equation which may be written in the form 
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a) 
dt 

ap(.  y) 
dt 

@(y a) 
dt 

ap(v 
dt 

2Pm ,q~. lp(a, a) +fi~(p(m, a) + p(a, m)) + ~ 

( f i M + l q M + l  ? 7 -4 ,~ +~m--~qm-~)P(a, 7) +P~tP(a, M) 

+ fiYmP( m, 7) + %~ 

Ql~t+ lq~t+ 1 + ~t~m-lq~m-1) P(Y, a) + #~tp(M, a) 

m) + 

2fi~M+ ~ q~,+l P(~, Y) + P~M(P( M, 7) + P(7, M)) + ~rr 

(11) 

where the coefficients ~t, fi, and q are approximately constant and will be 
computed explicitly (see Appendix A), whereas the e are very small and may 
be neglected. Equations (11) also involve the intermediate probabilities 

p(a, m) = ~" p(i, m) (12) 
ie(o~) 

and similar probabilities which can be eliminited by a projection procedure, 
In order to define the quantities/~, q, e and to derive equations (11), it is 

necessary to introduce the following conditional probabilities: (a) the 
conditional probability pxy(nl,n2) that cells 1 and 2 be, respectively, in 
states n~ and rt2, knowing that they are in regions (x) and (y): 

Pxy(nl,n2) = p(ni,n2)/ e~(x ~ p(i,j) 
i ) j ~ ( y )  

= p(n~, nz)/p(x, y), if n, C (x), n 2 E (y) (13) 

(b) the conditional probability px(nl/n2) that the cell 1 be in state n~, 
knowing that this cell is in region (x) and that cell 2 is in state n2 : 

px(nffn2) = p(n,,n2)/ ~ p(i, nz), ifn I E (x) (14) 
I i e (x )  

Similar conditional probabilities are defined by interchanging the cells 1 and 
2. It should be noticed that, since these cells are entirely symmetrical from a 
physical point of view, one may write 

p,,y(nl, n2) = pyx(n2, n,) 
(15) 

X~ n,Px(nffj)= ~ n2Px(nz/J)=(n/j>x / ,  
nle(X)  n2~(x) 
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Equation (15) defines the conditional average number <n/j)x of particles in 
one cell, knowing that this cell is in region (x) and that the other cell is in 
state j. 

The time dependence of these quantities has not been indicated 
explicitly in order to simplify the notations. Our main hypothesis can now be 
stated precisely by assuming that for a small diffusion coefficient D the 
probability px(na/nz) remains approximately constant at long times, since 
this property holds true (15) if the homogeneous cell 1 is independent of the 
cell 2 (which corresponds to the limit of vanishing D). 

As a result the conditional average number (n/j)x defined by (15) is 
also stationary at long times, as well as the conditional probability 
px /n l , n z ) .  Thus we recover the initial assumption that at long time the 
probabilities should evolve without change of shape in each region (xy). 

Equation (11) is now obtained by summing the master equation (8) and 
by writing 

x__  Pi - Wj + D<n/j)x 
(16) 

and 

q]= )__, pxy(nl , j )  = ~. pyx(j, nz) (17) 
rile(X) n2e(x) 

It is seen that the coefficients p, ~t, and q are stationary at long times, 
according to the previous assumptions. The ~ terms of Eq. (11) are given by 

e~( t )  = - D m ( p ( m  -- 1, m) + p(m, m -- 1)) 

%~(t) = D(M  + 1) p ( M  + 1, m - 1) + Dmp(m,  M) 

er~(t) = D(M  + 1) p(m -- 1, M + 1) + Dmp(M,  m) 

e~(t) = - D ( M  + 1)(p(M + 1, M) + p(M, M + 1)) 

(is) 

They are probability fluxes from or to a highly improbable region where tile 
two cells are in the neighbourhood of ft. They can be considered negligible 
with respect to any other quantity in (11). 

3.4. Adiabatic Elimination of the Intermediary Probabilities 

In order to obtain a self-consistant equation for p(x, y) from (11), the 
intermediary probabilities p(x, m), p(x, M) and the symmetrical quantities, 



Two-Cell Stochastic Model of the Schl6gl Reaction 639 

defined by (12), have to be computed from the master equation (8). One 
finds for any j in the intermediate region ~ )  = {j: m ~ j ~< M} 

@(x, j)  
dt 

with 

l z f _ ,  p(x, j - -  1) -- (,us + PT) p(x, j )  + fi]+, p(x, j + 1 ) + ej(t) 

(19) 

e~(t)  = - W m _ l p ( m  - 1,j) + f fZmP(m,j  ) + D m p ( m , j -  1) 

- D ( j  + l ) p(m - l, j + 1) 

el(t) = -  I, VM+lp(M + 1 , j ) +  W M p (M , j  ) - D ( M +  1)p(M + 1 , j -  1) 

+ D ( j  + 1) p ( M , j  + 1) 

Here again, es(t ) can be neglected, as it expresses probability fluxes from or 
to the highly improbable region ~fl). p j  and fijx are defined by (16). 

Then, using the stationarity condition of pxy(n~,j) at j =  m - 1  and 
j = M + 1, Eq. (19) yields for j in the intermediate region (fl): 

M dp(x, j)  ~. 
dt k=m 

L2~ p(x, k) + t2~n_ , q~_ , ~jmp(X, a) 

+ fi~t+l q~t+, ~jMP( x, Y) (20) 

Here fijk is the Kronecker symbol; LjXk is an element of a triagonal matrix 
L X :  

G- -- - ( . ;  + z ; )  
LjC,,~ =~--x 

L ;L ,,; = uY 

LjXk = 0 o t h e r w i s e  

(21) 

Equation (20) can be solved formally as 

p ( x , j ; 0 =  )__2 ~eLX" " - o) t ]]k P( x, •; 
ke(tD 

~_ x X r Lx~; �9 
/am-xqm ~ l e l j m P ( X , a ; t - r ) d r  

f i | e L X X ]  + fi~+, q~t+ ~ t ;M p(x, 7; t -- r) dr if j e (fl) (22) 
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The region ~ )  is an unstable region connecting the two stable regions (a) 
and (7). The internal relaxation time in (fl), which is of the order of 
magnitude of IX~I-~(I)~ll being the smallest eigenvalue of L ~ in absolute 
value) is supposedly very small on the scale of the long time evolution of 
p(n 1, n2). Thus, for any time t >> l;t~1-1, the first term on the right-hand side 
of (22) can be discarded, the integrals extended from zero to infinity, and 
p(x ,  y; t - r) replaced by p(x ,  y; t). Then from (11) 

@(a, a) 

dt 

dp(a, 7) 

dt 

@(y,7) 
dt 

- -  -- 2r p(a,  a) + fi~t+ lq~u+ ,k~ 7) + P(7, a)) (23a) 

a a - a  7 7 -t~ t~ -o~ 
t~m_lqm_,k  2 p(a,  a) -- (flm_,qm_lkf~ + gM+ ,qM+ ,kb)  p(a,  7) 

7 ? 
-[- f l T M + l  qM+ l k b P ( Y ,  7 )  ( 2 3 b )  

7 7 - ?  7 - 7  - U m _ l q m _ l k f ( p ( a ,  7 ) + P ( 7 ,  a ) ) - 2 f i ~ + , q ~ + a k b P ( 7 , 7 )  (23c) 

and the equation obtained from (23b) by changing p(a,  7) in P(7, a). The 
quantities k~, k~, k], k~ are defined as 

= 1 -- (oo f ix [ eL:~t] m m  dt ky 
Jo 

x - x  LXt 
kb = m e mM dt 

Ur x L X t = M e Mmd 

(24) 

it comes out that 

X - - X  X X X k ; - k ]  _x 1 
lamg x k= -1 r 

= k ~ - -  x x X  -x x 
/IMgM ~=m Itkgk 

(26) 

- x LXt k ~ =  l -  #M[e ]MMdt 

The matrices L ~ given by (21) are particular nonstochastic tridiagonal 
matrices similar to the matrices of the single box problem that we have 
studied in an earlier paper. (is) We recall briefly in Appendix B how the 
k x,/~* can be calculated exactly. Putting 

X X X 
lji_d~i_2 ... I~ o gX = (25) 

--X --X --X r "'"/~1 
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Furthermore it is possible to express the qjY as a function of the gX as shown 
in Appendix A: 

g; 
for j E (y), y =  a, y (27) q~-- Y~k~(y, g~ 

Thus the p(x, y) satisfy the simple evolution Eq. (23), which may be written 

[p(a,a)] LF2K~o K<; K<; 0 ] [p(a,a)] d I p(a, 7) / = / K7 -K;  -- KS o K~ / p(~ y)/ 
/ " z  o /"o',a) / 

L P(Y, 7)..] K~, K[ --2K{ L P(7, Y)J 
(28) 

K~ and K~ express for each cell the forward passage rate from (a) to (y), and 
the backward passage rate from (7) to (a), knowing that the second cell is in 
region (x). According to (25)-(27), they have the following expressions: 

K~= g~ ~ x x 
j ) k=m-1 f fkgk 

(29) 

K~ = g~' -x - 
j ) k=m & g ~  

With an obvious reindexing of the p(x, y): 

p(a,  a) = p,, p(a,  y) = P 2 ,  P (7 ,  r = P 3 ,  P(Y, Y) = P4 

Eq. (28) yields 

4 - j  k 
Xk~i Pi(t) = ~ e &' XkXl k= l  

for p~(0) = 6~ (30) 

2,,  Y~, _.3:,.1' are, respectively, the eigenvalues, 
vectors of the evolution matrix (21). 

The eigenvalues prove to be 

and the left and right eigen- 

~q = O  

Kf T K'~) 2 + 2K']K~] 1/2 

(31) 

822/37/5-6 10 
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Xil _ 2K~ i , _x2 =_-53 = 1, 
21( 7 + )%' 

4 4 
_X 1 = X 4 ~--- 0 ,  

and with the left eigenvectors: 

and are associated with the (nonnormalized) right eigenvectors: 

_x] 2K} i = 1 , 2 , 3  
2K0 r + 2 i' 

= 1 

(32) 

2K{ 
2K7 - -3 1, 24 -- 2K~-~ j.i 

= 2 1 ( 7  + , = x ,  = 
(33) 

- 1  - 4  - 2  -3 1 
2 4 = X 4 = 0 ,  2 4 = - - 2  4 ~ -  

It is seen that the first three eigenvectors are symmetrical and the fourth 
eigenvector is unsymmetrical. The symmetry between p(a, y) and p(y, a) in 
(28) is only broken by the initial conditions: starting from a symmetrical 
distribution, for instance, concentrated on one of the homogeneous steady 
states, the equality of p(a, ~) and p(y, a) propagates in time. Thus in the 
spectral decomposition (31), k = 4 can be discarded; the evolution of pi(t ) 
reduces to the decay of two exponentials, of characteristic times IL21 1 and 
I)],31-1. For times t >  1221-1 > 1~,31-1, a stationary distribution is reached, 

p(a, y) = p(y, a) = N - 1  p(7, y ) =  N_ 1 ( Ky~ 
\ K{/ 

(34) 

which is given by 

p ( a , a ) = U _  1 (K~ ] 
\x7 /' 

where N is the normalization factor (2 + (K~/KT) + (Ky/K[)). 

4. NUMERICAL RESULTS 

The computation of the passage rates K}, K s makes sense as long as the 
conditional averages (nJnj) x can be calculated with a sufficient accuracy. As 
mentionned previously, the analysis of this important point is reported in 
Appendix A. It is shown that in the thermodynamic limit, (nl/n2)x is the 
solution of the equation 

w(nl) + ffJ(n,) + Dn z w(nz) + Dnl 
ff~(n2) + Dn2 

ff~(n2) + Dn2 
Dn I -- 0 (35) 

w(n2) + Dnl 

which belongs to the region (x); w and r~ are the deterministic birth and 
death rates defined by (3). (nJnl )  x verifies the symmetrical equation with 
respect to nl ,n  2. It can be easily seen that (35) and its symmetrical are 
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simultaneously satisfied for the steady states of deterministic Eq. (6). We 
have represented graphically their solutions in the plane (n~, nz), for the 
chemical rates used by Frankowicz and Gudowska-Nowak in their Monte 
Carlo simulation (13): 

W ,  = A V(n (n  - 1)/V 2 + C / A )  

f i e  = n( (n  - 1)(n - 2)/V 2 + B) 

A= 1 .55 ,  B=0 .595 ,  C=0.0604965, V =  100 

(36) 

and for different values of the diffusion coefficient D. In agreement with the 
deterministic analysis of Ebeling and Malchow, (14) three regions of D can be 
distinguished: 

(i) For small D (Fig. 2a), (35) admits three solutions for any n 2 (more 
precisely, in our case, for n 2 > 150. We do not take care of the regions of the 
plane (nl, n2) far beyond the second peak since, in terms of probabilities, 
their contribution is very small). The two stable solutions correspond to the 
conditional averages in region (a) and (7), or equivalently, in the ther- 
modynamic limit, to the maximum of the conditional probabilities in region 
(a) and (y). The unstable solution belongs to the region (fl). Although its 
meaning in terms of conditional average is not obvious, this solution can 
likely be assimilated to the minimum of the conditional probabilities. We can 
see in Fig. la that this is both consistent with the deterministic analysis of 
Section 2.2 and with the approximative shape of the stationary distribution 
given by Fig. 1. The surface presents four peaks separated by saddle points. 
The region (tiff) surrounds an unstable state and has supposedly a 
negligeable probability weight. 

(ii) For intermediate D (Fig. 2b), there is a critical value n c inferior to 
y such that Eq. (35) admits three solutions for n 2 < nc and only one solution 
for n z > nc. The line of maximum conditional probabilities for n 1 in the 
region (a) does not interest anymore the line of maximum conditional 
probabilities for n 2 in the region (y). The two stable inhomogeneous steady 
states have disappeared, while two inhomogeneous saddle points still exist. 

(iii) For larger D (Fig. 2c), the inhomogeneous saddle points have 
disappeared. A valley where the conditional probabilities for both nl and nz 

are minimum intersects perpendicularly the main diagonal at the point (fl, fl). 
This point is presumably a saddle point, while (a, a) and (7, 7) are still stable 
points. 

In their Monte Carlo simulation of the two-cell model, Frankowicz and 
Gudowska-Nowak have computed the mean first passage time from the state 
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Fig. 2. Maximum ( ) and minimum ( . . . . . .  ) of the conditional probabilities, in both 
directions, and for different values of D. The intersection of two solid lines gives a stable node 
(O).  The intersection of one solid line and one dashed line gives a saddle point (~ , ) .  The 
intersection of two dashed lines give an unstable point ((},). 
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(a, a) to the state (7, ~') for the set of constants (36). In our theory, this mean 
first passage time is qualitatively given by the quantity 

1 1 1 

which expresses the mean passage time from the region (aa) to the region 
(YT) through (aT) and (To). 

We have computed the stationary distribution (34) and the passage time 
T~y for the constants (36). Our results are given in Table Ia. They have to be 
considered with some caution, since V =  100 is a small volume, and the 
potential barriers between the steady states are very low; our basic 
hypothesis of quasistationarity around each steady state is thus not well 
verified. However, we recover the main points brought out by the Monte 
Carlo simulation. When D is increased from D = 0, where the two cells are 
independent, to the first critical value Dc, of D, we find that (a) the relative 
stability of the inhomogeneous steady state is decreased, (b) the relative 
stability of the homogeneous steady state with higher concentration is 
increased, and (c) the passage time from (a, a) to (7, 7) decreases and seems 
to reach a minimum beyond D = 0.015. This minimum was observed by 
Frankowicz and Gudowska-Nowak for D = 0.02. 

Our calculation of the passage times does not apply to the intermediate 
and high values of D, where T ~  should increase. We give in Table Ib a 
second set of results for a larger volume, which fits better to the hypothesis 

Table I. Stationary Distribution and Mean Passage Time from (ao) 
to (yy) for Different Values of D 

D 
a. A=1 .55 ,  B = 0.595, C=0.0604695,  V = 1 0 0  

p(~, a) p(~, y) p(~, ~) To~ 

0.000 0.070 0.195 0.540 159 
0.005 0.058 0.126 0.690 135 
0.01 0.047 0.082 0.789 127 
0.015 0.036 0.055 0.854 126 

D 
b. A = 1 . 4 9 ,  B = 0.595, C =  0.06048965, V = 4 0 0  

p(a, a) p(~, y) p(~, y) 

0.000 0.444 0.222 0.111 8986 
0.005 0.424 0.084 0.407 6932 
0.01 0.271 0.023 0.683 8753 
0.015 0.170 0.007 0.817 11920 
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of quasistationarity. We have used slightly different constants, in order to 
make the weight of the regions (aa) and (?~,) of comparable magnitude. The 
main features described above are conserved. The decrease of the stability of 
the inhomogeneous steady state is emphasized. The value of D 
corresponding to the minimum is shifted toward zero. It would be interesting 
to compare these results to other Monte Carlo simulations with a larger 
volume, but such simulation are not available up to now, since the 
computing time is expected to increase drastically with V. 

5. D ISCUSSION 

In conclusion, it should be pointed out that our calculation depends on 
two basic assumptions: (a) the quasistationarity of the conditional 
probabilities inside each region (a), (?) and (b) the hypothesis of low 
coupling between the cells, permitting to calculate the conditional averages. 

The limits of these approximations are difficult to evaluate. 
Nevertheless, they have merit to lead to a very simple equation governing the 
evolution of the probability distribution, and to give directly the weight of 
the different peaks of the stationary distribution. This cannot be achieved by 
any other analytical theory at the moment. The comparison with the Monte 
Carlo calculation of Frankowicz and Gudoska-Nowak seems encouraging. 
On the other hand, the determination of the conditional averages of the 
Appendix A gives a better idea of the shape of the stationary distribution. 
The results agree with those of the deterministic analysis for any value of D 
in the thermodynamic limit. However, the treatment of the passage times for 
intermediate and large D remains outside the scope of the present theory. 

APPENDIX  A 

On a short time scale, the conditional probabilities Px(nl/nz), x = ct, y, 
relax towards a quasistationary distribution which is approximatively iden- 
tical to the stationary probability distribution obtained when reflecting 
barriers are introduced at nl = m and n~ = M, which is now assumed. Owing 
to the definition (14), the evolution equation Of Px(nl/n2) then reads 

dPx(nl/nz) 1 dp(nl, n2) px(n,/nz) dp(x, n2) 
dt p(x, t/z) dt p(x, n2) dt 

(A1) 

dp(x, n2)/dt can be straightforwardly obtained by summing the master 
equation (8) over the region (x), and by taking into account the reflecting 
boundary conditions: 
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dp(x, n2) 
dt 

Wn2_lp(x,n 2 - 1 ) -  (Wn~+ Wn2)p(x, n2)+ ff".2+~p(x, n2 + 1) 

qX = 
n2 

so that (A3) yields 

+ D(n z + 1)p(x, n 2 + 1)+  D<nl/nz_t>~p(x, n z -- 1) 

- -  D(n 2 + (nl/n2>x) p(x, n2) (A2) 

In particular, the stationary solution of (A2) verifies a detailed balance con- 
dition: 

p(x, n 2 + 1) W. 2 + D(nl/n2) x _ #z (A3) 
p(x, n2) W.2+ + D(nz + 1) Ji x 1 n 2 +  1 

Owing to the definitions (13) and (17), we have 

p(x, nz) 
Y' pxy(n 1 n 2 ) -  n 2 E (y) (A4) 

/,/1E (X) p(x, y) 

x x 

q.2+x _ #.2 (A5) qX2 #~2+~ 

from which formula (27) can be recovered. 
Now the evolution ofpx(n~/n2) can be found explicitly from (A1), (A2), 

and from the master equation (8). At this point, we introduce the following 
complementary hypothesis: when the diffusional coupling between cells 1 
and 2 is low, px(nl/n2) should be a slowly varying function of n 2, and 
depends mostly on n 1. This statement enables us to proceed to a useful 
approximation in the evolution equation ofp~(n~/n2); we shall write 

p~(n~/n 2 - 1) ~ p~(nl/n2) ~- p~(nl/n 2 + 1) (A6) 

so that Eq. (A1) reduces to 

dPx(nl/n2) [ Wnl + D(n 2 + I ) P ( X '  n 2 + 1 ) 1  
dt - -1 p(x, n2) px(nl - 1/n2) 

_ [Wn, +@z + D n l + D ( n 2 + l ) P ( x ,  n 2 + l )  
p(x, n2) 

1) + D(nl/n2>x \ p(x, n2) 

+ [ l ~ . ~ + l + D ( n l + l )  p ( x ' n 2 - 1 ) ]  p(x, n2) Px(nl + 1/n2) (A7) 

The approximation scheme that we have used above is classically used to 
solve multivariate master equations (see Ref. 2, Chap. 7.5). (A7) has to be 
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completed by the evolution of the conditional averages. Multiplying (A7) by 
n 1 and summing over (x), we get 

d(nl/n2) x (Wn, - l~n,/n2)x+D(n2 + 1)P(x, nz+ 1) 
dt p(x, n2) 

p(x,n 2 - 1) [ p(x' n z -  1) 1] 
-- D(nl/n2)~ P(~,,nT) + V(6n~/n2)~ L P(x, n2) (A8) 

where (6n~/n2) x is the conditional variance in region (x). The variances of 
any order make sense, since the conditional probabilities have been 
constructed to be singly peaked. With the definition (9) of Wnl and if'.1, it is 
easy to show that 

- k t 
( W n l -  ~r711) X = W(?11/n2) x - -  W(nl/n2) x - -  V 2 ( (~n] /n2)x  

1 2 
+--~T(6nt /n2)x[n4kz-k l (3(n l /n2)x-  3)] (A9) 

As a first approximation we can neglect all the variances in Eq. (A8). Owing 
to the detailed balance condition (A3), the stationary value of (nl/n2)x then 
verifies a closed equation: 

- Wn2 + D(nl/nz)x 
0 -~- W ( n l / n l ) x -  W(nl/n2)x "4- D(nz + 1) ,~1~.2 -1 ) + 

J~n2 + Dn2 
-- D(nJn2) ~ W,2-1 + D(njn2)x (A10) 

which can be solved numerically in a straightforward way and thus allow us 
to calculate the coefficients ~ and fi of Eq. (16). The approximation 
procedure can be refined by writing the equation verified by (~n~/n2) x, and 
vanishing only the variances of order superior or equal to 3. Without 
entering the detailed calculation, it is possible to obtain the two coupled 
equations: 

p(x, n 2 + 1) p(x, n 2 - 1) 
0 = W(nl /n2)x - -  ~Z(nl/n2)x -+- D(n 2 + 1) D(njnz)x  p(x, n2) p(x, nz) 

1 _31] I + (fin~/n2)x lD (P(x' n2--1) 1 ) +  [nAk2 - kl(a(nJn2) x 
pC, s 

(Al l )  

0 =  W(.,/.9 + ff'(.1/n~) + D(n2 + 1) P(x'nZ n2)l) + D(njnz)x  p(~(x~n~_)l) 

_(6n~/n2)x 12DP(X,n 2 -  l) + ~  [nAk2( 1 _4(nl/n2)x ) 
p(x, n2) 

- 15(n1/n2) ~ - 15(njn2) x + 7)] + 2k 4 I + kl(6(nl/n2)~ 
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(6n~/n2)  ~ can be expressed as function of (na/n2)  x in the second equation 
and then be substituted in the first one, so that a closed equation for (n l /nz )~  
is obtained. Notice that in the thermodynamic limit, if V represents the 
volume of each cell, all the terms of order V i, i <~ O, can be discarded in 
(AIO), and this equation reduces to 

0 = w ( ( n l / n 2 ) x )  -- ff~((n,/n2)x) + D n  2 

- D(r t l /n2)  x l'v(n2) q- D n  2 
w(nz)  + D ( n , / n z ) ~  

w(n2) + D ( n l / n 2 ) x  

rv(n2) + Dn2 

(A12) 

where w and # are the deterministic rates defined by (3). This last formula 
permits us to recover the results of the deterministic analysis, as mentioned 
in Section4. This is an encouraging consequense of the approximation 
scheme that we have used, and which consists in considering Px(n l /n2)  and 
(n l /n2 )  x as slowly varying functions of n 2. 

A P P E N D I X  B 

Let L x be the matrix (21). We want to calculate the quantities k} and 
/~} defined by 

k~c = 1 _ f i x  [eL~t]m m at  

/~7 = / ~ f ]  [eL~']~,,, dt 

(B1) 

The integrals can be expressed in terms of the minors Dii and of the deter- 
minant D and Lx:  

j :  x-1 D mm 
[eLXt]m m dt = - - L m m  - -  D 

f :  x - 1 OMm [eL~t]Mm = --LMm -- D 

(B2) 

Let A~ be the determinant of the submatrix obtained by suppressing the first 
k lines and columns of L x. It follows that 

D = ~ ,  Dram =A~ (B3) 
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It is easy to show that  the A~, verify a recurrence  re la t ion:  

I 
m~/_m+2 ~ 0, ZJM_m+ 1 = l 

- / I 

Ark = --(flk+m + ltk+m)ZJk+ l -- ['tk+m~k+rn+ l Ak+z 

for O <~ k <~ M - -  rn (B4) 

so that  the A~ can  be proved to have the fol lowing expressions:  

Atk~ (--])M-m+l--k[dM[dM_l ...flm+k (1-~[dm+k..~ ... ~_ ~m+k'''[d~M ) 
flm+k flm+k 

(BS) 

On the other hand ,  Dram is ob ta ined  direct ly f rom the mat r ix  LX: 

DmM = WM_ 1 WM-2 ''" W m (B6) 

Wi th  the preceding formulas ,  it is easy to recover  the express ion (26) for k} 
and  k}. k~ and  k-~ can  be ca lcula ted  in a s imilar  manner .  
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